Разработчики: | Мегапьютер Интелидженс (Megaputer Intelligence) |
Технологии: | BI, Big Data, Data Mining, Речевые технологии |
Содержание |
Polyanalyst - платформа визуальной разработки сценариев анализа данных и текстов, не требующая для работы навыков программирования.
Система представляет собой сквозной инструмент обработки и анализа. Она способна выгружать информационные потоки из всех общеприменяемых разнородных источников (стандартные файлы, базы данных, социальные сети и т.д.) и, проведя их интеллектуальную обработку, представлять полученные результаты в виде настраиваемых пользовательских отчетов.
2022
PolyAnalyst – российская low-code платформа интеллектуального анализа данных и текстов enterprise уровня
Платформа PolyAnalyst, разработанная российским производителем программных продуктов Мегапьютер, является аналитической low-code системой и средой разработки интеллектуальных решений. Работа с платформой осуществляется с применением механизма графического построения аналитического скрипта, состоящего из последовательности функциональных узлов. Таким образом, даже пользователи, не обладающим специальными математическими знаниями и навыками программирования могут самостоятельно создавать законченные комплексные решения для анализа данных и текстов, а также оптимизации и автоматизации бизнес-процессов. Подробнее здесь.
Интеграция с Luxms BI
ГК Luxms и Мегапьютер в 2022 году объявили о успешном пилоте по глубинной многопараметрической аналитике текстов (NLP).
Совместное решение на базе Luxms BI и PolyAnalyst может быть ориентировано, в первую очередь, на внушительный пласт полезной информации, содержащейся в текстовых данных из интернета, и позволит выявлять и отслеживать проблемы, возникающие как у отдельных людей, так и у целых клиентских сегментов.
2020
Прогнозная модель развития пандемии вирусной инфекции COVID-19
Российская компания-разработчик аналитических продуктов Мегапьютер Интеллидженс опубликовала в мае 2020 года собственную прогнозную модель развития пандемии вирусной инфекции COVID-19 на территории России. Модель наглядно визуализирована и представляет собой интерактивную карту прогноза достижения пика новых случаев заболеваемости COVID-19, а также общее число активных, смертельных и случаев выздоровлений. Результаты прогноза представляются как в общем по стране, так и по каждому отдельно взятому субъекту РФ.
Для всех регионов имеется собственный ежедневный прогноз количества подтвержденных и активных случаев заболевания, числа выздоровлений и летальных исходов. В результате анализа данных о пандемии алгоритмами машинного обучения была получена статистическая картина течения и распространения заболевания. По каждому показателю алгоритм формирует два варианта развития событий: реалистичный и пессимистичный. Второй строится за счет увеличения параметра дисперсии распределения. Это делается на случай снижения уровня самоизоляции, вызванного наступлением майских праздников.Как создать ПО для технологического моделирования на замену западному совместно с партнёрами. Опыт «СИБУРа» представлен на TAdviser SummIT
Для формирования прогноза система проводит анализ исторических данных, получаемых из открытых источников. Модель использует алгоритмы машинного обучения и предиктивного анализа, учитывающие диффузии зараженных граждан между регионами в условиях беспрепятственного перемещения, а также строгость карантинных мер в том или ином субъекте. В ситуации, когда ключевые эпидемиологические характеристики COVID-19 еще достоверно не известны, выбранный подход к прогнозированию посредством ИИ может привести к получению наиболее точных прикладных результатов.
В основе методологии прогноза лежит сочетание различных техник. Совмещение разнообразных подходов необходимо так как прогноз строится для отдельных регионов, которые сильно различаются по степени развития эпидемии, демографическим показателям, да и по степени достоверности данных. Используется широкий спектр техник – и оптимизация феноменологических моделей, и устойчивые, но достаточно грубые методы типа деревьев решений, и такие точные алгоритмы как сверточные сети. Процедура их комбинирования также является предметом оптимизации- гиперобучение или «обучение обучению».
Представленный прогноз дает ответы на множество прикладных вопросов о борьбе с пандемией. Например, с какой нагрузкой в ближайшие дни может столкнуться система здравоохранения, и где уже сейчас могут быть смягчены карантинные меры. Также, сопоставив течение картины заболеваемости в регионе с введенными ограничительными мерами, можно сделать выводы об эффективности определенных методов борьбы с заболеванием.
При выполнении анализа учитывались общедоступные данные, полученные из открытых источников, таких как Роспотребнадзор и портал http://coronavirus-monitor.ru. Результаты анализа представляют собой прогноз, полученный на основе исторических данных, который следует учитывать только после тщательного, глубокого исследования, принимающего во внимание данные о картине течения заболевания, полученные из прочих источников.
Базовое описание и функциональные задачи
Комплексный процесс анализа выстроен из этапов очистки и подготовки данных, исследования с применением алгоритмов искусственного интеллекта и текстового анализа на 16 языках, а также публикации результатов в интерактивном веб-интерфейсе.
PolyAnalyst применяется в качестве открытой среды разработки. Она включает в себя элементы Low-code платформы, что совместно с механизмом визуального проектирования аналитического скрипта, позволяет пользователям, не обладающим специальными математическими знаниями и навыками программирования, самостоятельно создавать законченные многошаговые решения для анализа данных и автоматизации рабочих процессов.
- Анализ структурированных данных.
- Анализ текстовых данных: классификация, кластеризация, извлечение сущностей и фактов, выявление тенденций.
- Разработка решений по автоматизации процессов работы с данными:
- Контроль качества обслуживания клиентов путем анализа сообщений, отправляемых сотрудниками колл центров;
- Юридической экспертизы договоров;
- Диспетчеризация потока входящих документов;
- Процессы и процедуры промышленных предприятий по использованию и анализу текстовых документов (договора, счета, финансовые сверки, накладные, жалобы, диспетчерские журналы, справочники НСИ, отзывы, переписка сотрудников, расшифровки переговоров и т.д.), в больших объемах проходящих через различные функциональные блоки: юридический, финансовый, продажи, маркетинг, обслуживание клиентов, анализ информационного поля, логистика, сопровождение бизнес процессов и т.д.
- Визуализация результатов анализа и конструирование отчетов.
Ожидаемый эффект от внедрения
- Отказ от затратного ручного труда по анализу данных;
- Автоматизация рабочих процессов, подразумевающих взаимодействие с информационными потоками и документацией;
- Повышение эффективности управленческих решений за счет роста их информированности;
- Агрегирование информации из всего множества используемых источников;
- Повышенная надежность финансовых/коммерческих расчетов и прогнозирование.
Подрядчики-лидеры по количеству проектов
Прогноз (250)
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (125)
RBC Group Украина (124)
БизнесАвтоматика НПЦ (119)
Консультационная группа АТК (100)
Другие (2547)
БизнесАвтоматика НПЦ (12)
Форсайт (8)
ФТО (5)
Manzana Group (М Софт) (4)
Softline (Софтлайн) (3)
Другие (74)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
Qlik (QlikTech) (59, 464)
Форсайт (19, 340)
SAP SE (70, 303)
Oracle (65, 267)
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (4, 236)
Другие (1116, 1656)
БизнесАвтоматика НПЦ (1, 12)
Форсайт (3, 8)
Optimacros (Оптимакрос) (1, 6)
Microsoft (1, 5)
Manzana Group (М Софт) (3, 4)
Другие (40, 50)
Optimacros (Оптимакрос) (1, 10)
Форсайт (2, 8)
Analytic Workspace (ОСТ) (2, 5)
Manzana Group (М Софт) (2, 5)
БизнесАвтоматика НПЦ (1, 5)
Другие (38, 59)
Simetra (ранее А+С Транспроект) (1, 13)
Форсайт (2, 9)
Optimacros (Оптимакрос) (1, 8)
VMware (2, 7)
БизнесАвтоматика НПЦ (1, 7)
Другие (41, 65)
Распределение систем по количеству проектов, не включая партнерские решения
QlikView - 370
Форсайт. Аналитическая платформа (ранее Prognoz Platform) - 321
Deductor - 226
Visary BI Платформа бизнес-аналитики - 119
SAP NetWeaver Business Warehouse (SAP BW/4HANA) - 103
Другие 2019
Visary BI Платформа бизнес-аналитики - 12
Optimacros Платформа для оптимизационного и консолидационного планирования - 6
Microsoft Power BI - 5
Форсайт. Аналитическая платформа (ранее Prognoz Platform) - 5
Qlik Sense - 4
Другие 51
Подрядчики-лидеры по количеству проектов
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (125)
БизнесАвтоматика НПЦ (120)
Инфосистемы Джет (13)
Сбербанк (10)
Полиматика (Polymatica) (9)
Другие (642)
БизнесАвтоматика НПЦ (12)
OneFactor (Уанфактор) ЕдиныйФактор (3)
Мегапьютер Интелидженс (Megaputer Intelligence) (2)
Яндекс (Yandex) (2)
Московский центр инновационных технологий в здравоохранении (2)
Другие (57)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (2, 236)
БизнесАвтоматика НПЦ (2, 119)
Полиматика (Polymatica) (4, 15)
SL Soft (СЛ Софт) (3, 15)
Oracle (12, 14)
Другие (315, 182)
БизнесАвтоматика НПЦ (1, 12)
Сбербанк (2, 2)
Loginom Company (ранее BaseGroup Labs Аналитические технологии) (1, 2)
Платформа больших данных (Platforma) (1, 2)
HFLabs (ХФ Лабс), ранее HumanFactorLabs (1, 2)
Другие (14, 16)
БизнесАвтоматика НПЦ (1, 5)
Сбербанк (3, 3)
Ситроникс КТ (ранее Кронштадт Технологии) (2, 2)
CM.Expert (АвтоЭксперт) (1, 2)
PIX Robotics (Пикс Роботикс) (1, 2)
Другие (16, 19)
БизнесАвтоматика НПЦ (1, 7)
SL Soft (СЛ Софт) (3, 4)
Полиматика (Polymatica) (3, 4)
Retail Rocket (Ритейл Рокет) (1, 2)
Rubbles (Раблз) (1, 2)
Другие (15, 15)
Распределение систем по количеству проектов, не включая партнерские решения
Deductor - 226
Visary BI Платформа бизнес-аналитики - 119
Polymatica Analytics Аналитическая платформа - 13
IBM SPSS Decision Management - 10
Loginom Аналитическая платформа - 10
Другие 167
Visary BI Платформа бизнес-аналитики - 12
Loginom Аналитическая платформа - 2
Platforma и HFLabs: Технология безопасного метчинга данных - 2
Webiomed - Платформа предиктивной аналитики и управления рисками в здравоохранении на основе машинного обучения - 2
PolyAnalyst Платформа визуальной разработки сценариев анализа данных и текстов - 2
Другие 11