Разработчики: | НИТУ МИСиС (Национальный исследовательский технологический университет) |
Дата премьеры системы: | 2021/12/22 |
Технологии: | Data Mining |
Основная статья: Data mining Интеллектуальный анализ данных
2021: Представление механизма семантического быстрого поиска по специализированным БД
Российские ученые разработали механизм семантического быстрого поиска по специализированным базам данных. Исследование по сегментации текстовых документов для оптимизации и 20%-ого ускорения поиска нужной информации пользователями было реализовано группой ученых НИТУ «МИСиС» в рамках гранта Российского научного фонда на сумму 18 миллионов рублей. Об этом 22 декабря 2021 года TAdviser сообщили в НИТУ «МИСиС».
Ученые решали задачу корректного поиска объемных документов, близких по смыслу. Обычно в больших сложных документах, особенно в рамках специализированных поисковых систем, содержится сразу несколько тем, что сильно затрудняет автоматический поиск. Исследователи предложили использовать метод сегментирования. Экосистема PROMT: больше, чем перевод
Технология «МИСиС» может использоваться для улучшения качества информационного поиска и анализа данных в специализированных поисковых системах, предназначенных для научных и промышленных организаций – по отчетам, патентам, научным публикациям.
![]() | «Сегментирование документов — это деление текста на такие отрывки, в которых речь идет об одном и том же, что может быть полезно в разных задачах обработки естественного языка. К таким задачам, например, относится анализ больших документов или поиск по содержанию документа. С точки зрения прикладного машинного обучения сегментация длинных текстов обоснована, так как на коротких текстах обычно лучше работают различные методы векторизации. Это логично, ведь чем больше текст, тем больше в нем разных смыслов и тем сложнее агрегировать все эти смыслы в некоторое общее векторное представление», — рассказал Никита Никитинский, научный сотрудник Центра исследования больших данных НИТУ «МИСиС». | ![]() |
Команда специалистов Центра предложила следующее решение этой проблемы: разбить документ на несколько сегментов, каждый из которых относится к одной теме. По таким тематически однородным кускам текста компьютерному алгоритму проще производить поиск.
![]() | «В рамках исследования мы использовали метод, основанный на подходе аддитивной регуляризации тематических моделей (additive regularization of topic models, ARTM) и алгоритме Topic Tiling. В результате экспериментов удалось улучшить точность работы узкоспециального поиска по научным публикациям с 55% до почти 82%», — добавил Никитинский. | ![]() |
По словам разработчиков, технология уже реализована в российском проекте создания Реестра обязательных требований. По их оценкам, с использованием предложенного метода до 15-20% увеличивается скорость и эффективность поиска нужной информации пользователями, что критично для научных и промышленных организаций.
Как известно, на декабрь 2021 года похожие проблемы решают исследователи и инженеры из других крупных организаций, в том числе Университет Мангейма, французский исследовательский центр Eurecom и Google Research, которые в рамках своих исследований изучали публикации членов научного коллектива по этой тематике.
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Данные не найдены
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)