Содержание |
1965: Мур формулирует предположение
Закон Мура — эмпирическое наблюдение, сделанное в 1965 году (через шесть лет после изобретения интегральной схемы), в процессе подготовки выступления Гордоном Муром (одним из основателей Intel).
Зависимость числа транзисторов на кристалле микропроцессора от времени. Обратите внимание, что вертикальная ось имеет логарифмическую шкалу, то есть кривая соответствует экспоненциальному закону — количество транзисторов удваивается примерно каждые 2 года.
Мур высказал предположение, что число транзисторов на кристалле будет удваиваться каждые 24 месяца. При анализе графика роста производительности запоминающих микросхем им была обнаружена закономерность: появление новых моделей микросхем наблюдалось спустя примерно одинаковые периоды (18—24 мес.) после предшественников, при этом количество транзисторов в них возрастало каждый раз приблизительно вдвое. Гордон Мур пришел к выводу, что при сохранении этой тенденции мощность вычислительных устройств за относительно короткий промежуток времени может вырасти экспоненциально.
Это наблюдение получило название закон Мура. Существует масса схожих утверждений, которые характеризуют процессы экспоненциального роста, также именуемых «законами Мура». К примеру, менее известный «второй закон Мура», введённый в 1998 году Юджином Мейераном, который гласит, что стоимость фабрик по производству микросхем экспоненциально возрастает с усложнением производимых микросхем. Так, стоимость фабрики, на которой корпорация Intel производила микросхемы динамической памяти ёмкостью 1 Кбит, составляла 4 млн. $, а оборудование по производству микропроцессора Pentium по 0,6-микрометровой технологии c 5,5 млн. транзисторов обошлось в 2 млрд. $. Стоимость же Fab32, завода по производству процессоров на базе 45-нм техпроцесса, составила 3 млрд. $. Известный писатель-фантаст Сергей Лукьяненко выступит на TAdviser SummIT 28 ноября. Регистрация
По поводу эффектов, обусловленных законом Мура, в журнале «В мире науки» как-то было приведено такое интересное сравнение:
«Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (~18,9 л) топлива. Приведенные цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ». — Журнал «В мире науки» (1983, № 10)[3] (русское издание «Scientific American»)
В 2007 году Мур заявил, что закон, очевидно, скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света.
Одним из физических ограничений на миниатюризацию электронных схем является также Принцип Ландауэра, согласно которому логические схемы, не являющиеся обратимыми, должны выделять теплоту в количестве, пропорциональном количеству стираемых (безвозвратно потерянных) данных. Возможности по отводу теплоты физически ограничены.
Параллелизм и закон Мура
В последнее время, чтобы получить возможность задействовать на практике ту дополнительную вычислительную мощность, которую предсказывает закон Мура, стало необходимо задействовать параллельные вычисления. На протяжении многих лет, производители процессоров постоянно увеличивали тактовую частоту и параллелизм на уровне инструкций, так что на новых процессорах старые однопоточные приложения исполнялись быстрее без каких либо изменений в программном коде. Сейчас по разным причинам производители процессоров предпочитают многоядерные архитектуры, и для получения всей выгоды от возросшей производительности ЦП программы должны переписываться в соответствующей манере. Однако, по фундаментальным причинам, это возможно не всегда.
2012: Опровержение закона Мура
Исследователи из Университета Нового Южного Уэльса (University of New South Wales) совершили очередной прорыв в развитии компьютерной отрасли: им впервые удалось создать рабочий транзистор на базе одного атома.С 1954 года, когода научный сотрудник Texas Instruments Джордж Тиль (George Teal) создал первый кремниевый транзистор, инновационные решения позволили постепенно уменьшать и уменьшать размер этих электронных компонентов, что привело к созданию компьютеров и мобильных устройств современного типа.
Одно устройство может содержать миллиарды транзисторов, которые работают вместе для выполнения простых двоичных вычислений. Чем больше транзисторов находится на единицу площади, тем быстрее производятся расчеты и тем больше информации компьютеры могут обработать и сохранить, одновременно затрачивая меньше энергии.
В прошлом уже были созданы одноатомные транзисторы. Но к сегодняшнему дню в их использовании была достигнута погрешность в 10 нанометров (нанометр равен одной миллиардной метра). Но для одноатомного транзистора, чтобы он мог использоваться в реальных устройствах, требуется расположение одного атома точно на кремниевом чипе. По данным журнала о нанотехнологиях Nature Nanotechnology, именного этого и удалось достичь исследователям.
Они использовали сканирующий туннельный микроскоп (устройство, которое позволяет исследователям видеть атомы и обеспечить точность манипуляций с ними) ученые проделали узкий канал в кремниевой базе. Затем был применен газ фосфин, с помощью которого был помещен отдельный атом фосфора между двумя электродами в нужной области. Когда электрический ток проходит через такое устройство, оно усиливает и передает электрический сигнал, что и является основным принципом работы любого транзистора.
Так что достижение ученых из Австралии приблизило человечество еще на один шаг к созданию квантовых компьютеров. Удивительно также и то, что команда бросила вызов закону Мура (основывается на публикации Гордона Мура (Gordon Moore) в журнале Electronics Magazine в 1965 году). Согласно этому закону, число транзисторов, размещающихся на одной схеме, удваивается каждые 18-24 месяцев. Так что, по прогнозам Мура, одноатомные транзисторы должны появиться не раньше 2020 года. Однако это произошло на 8 лет раньше.
Мишель Симмонс (Michelle Simmons), директор ARC Centre for Quantum Computation and Communications и глава исследовательской группы, заявил: «Мы решили 10 лет назад, что создадим одноатомный транзистор так быстро, как это будет возможно, и тем самым опровергнем этот закон. И вот мы сделали это в 2012 году».
Однако до реального использования таких транзисторов пройдет еще 15-20 лет. Дело в том, что работающий образец функционирует только при температуре минус 391 градус в пределах лаборатории, так что является всего лишь доказательством концепции.
2015: Intel верит в дальнейшее соблюдение закона Мура
На конференции International Solid-State Circuits Conference (ISSCC), которая с 22 по 26 февраля 2015 года прошла в Сан-Франциско, участники полупроводниковой отрасли рассказали о своих достижениях и планах в части освоения «тонких» технологических норм. Добраться до 10 нм чипмейкеры смогут при помощи нынешних технологий, но дальнейшее развитие осложнится, поэтому производителям потребуются новые решения.[1]
По словам ведущего специалиста Intel Марка Бора (Mark Bohr), несмотря на всеобщую борьбу с растущими расходами на полупроводниковые пластины, компания продолжает увеличивать в микросхемах плотность транзисторов и снижать себестоимость каждого из них, и делает это быстрее в случае с 14 нм по сравнению с предыдущими технологиями. Эти темпы сохранятся на 10 и 7 нм шаге за счет масштабирования, позволяющего повысить степень интеграции и удешевить стоимость одного транзистора, заявил Бор.
Intel уверена, что стоимость транзисторов будет по-прежнему снижаться по мере освоения передовых техпроцессов
Стоит отметить, что Intel начала 14-нм производство с запозданием примерно на 6-9 месяцев относительно планируемых сроков. Несмотря на это американская корпорация опередила конкурентов, и к концу февраля 2015 года лишь она предлагает 14-нм процессоры, а TSMC, Samsung и GlobalFoundries только-только приноравливаются к выпуску 16-нм продукции с сохранением 20-нм геометрии в металлических слоях.
Intel обещает коммерческое освоение 10-нм техпроцесса в 2016 году и планирует использовать 7-нм технологию в 2018-м. Еще через два года компания рассчитывает на переход к 5 нм.
Сделать это без инноваций будет трудно. Они обязательно появятся, поскольку именно так было в последние годы, уверен Марк Бор, ссылаясь на закон Мура, предполагающий, что вычислительная мощность удваивается каждые 24 месяца.
При освоении передовых проектных норм Intel, возможно, будет применять упаковку чипов типа 2,5D (слои помещаются рядом друг с другом) и 3D (слои располагаются поверх друг друга). При этом корпорация продолжает поиск новых эффективных с точки зрения себестоимости решений.
Глава полупроводникового подразделения Samsung Кинам Ким (Kinam Kim) заявил, что CMOS-транзисторы теоретически можно уменьшить до норм 3-5 нм. Вместе с тем топ-менеджер согласился с тем, что технологии ниже 10 нм требуют новых подходов.
2019: Скорость развития ИИ опережает закон Мура
В конце декабря 2019 года Стэнфордский университет обнародовал результаты исследования, согласно которому вычислительная мощность искусственного интеллекта уже более семи лет опережает закон Мура. Подробнее здесь.